

Welcome to Apache Warble’s documentation!

Contents:

	Setting up Apache Warble
	Understanding the Components

	Component Requirements

	Source Code Location

	Installing the Server

	Installing Nodes

	General Design Principles
	Client/Server breakdown

	Agent/Node and Server data flows

	Client and Server communication

	Node Task Registry Design
	Node Tasks

	Task Categories

Indices and tables

	Index

	Module Index

	Search Page

Setting up Apache Warble

Understanding the Components

Warble currently consists of two major components:

	The Warble Master Server (warble-server)

	This is the main database and UI Server. It serves as the hub for the
nodes/agents to connect to, and provides the overall management of
hosts, tests, as well as the visualizations and API end points.

	The Warble Node Applications (warble-node)

	This is a daemon with a collection of test classes used to test
external hosts for various services and/or response values. Nodes
send results back to the master, which then processes and responds
accordingly (for instance, in the case of downtime).

A third major component, the Warble Agent Applications, are being
worked on, but is not completed.

Component Requirements

Server Component

The main Warble Server is a hub for nodes/agents and tests, and as such, is
generally speaking only needed on one machine. It is recommended that, for larger
instances of warble, you place the application on a machine or VM with
sufficient resources to handle the database load and memory requirements.

We will be working towards a multi-master setup option, but that is
currently not available.

As a rule of thumb, the Server does not require a lot of disk space
(enough to hold the compiled database and timeseries), but it does require CPU and RAM.
The nodes/agents require virtually no disk space, as all test results are sent
to the master server for storage.

Node Component

The node component can either consist of one instance, or be spread
out across multiple machines for a distributed test coverage.
Nodes will auto-adjust the test speed to match the number of CPU cores available to it;
a node with two cores available will run up to 256 simultaneous jobs, whereas a scanner with
eight cores would run up to 1024 simultaneous jobs to speed up processing.
A node will typically require somewhere between 256 and 512MB of memory,
and thus can safely run on a VM with 2GB memory (or less).

Source Code Location

Apache Warble does not currently have any releases.
You are however welcome to try out the development version.

For the time being, we recommend that you use the master branch for
testing Warble. This applies to both scanners and the server.

The Warble Server can be found via our source repository at
https://github.com/apache/incubator-warble-server

The Warble Node Application can be found via:
https://github.com/apache/incubator-warble-node

Installing the Server

Pre-requisites

Before you install the Warble Server, please ensure you have the
following components installed and set up:

	A web server of your choice (Apache HTTP Server, NGINX, lighttp etc)

	Python 3.4 or newer with the following libraries installed:

	
	yaml

	
	certifi

	
	sqlite3

	
	bcrypt

	
	cryptography >= 2.0.0

	Gunicorn for Python 3.x (often called gunicorn3) or mod_wsgi

Configuring and Priming the Warble Server

Once you have the components installed and Warble Server downloaded, you will
need to prime the databases and create a configuration file.

Assuming you wish to install warble in /opt/warble, you would set it
up by issuing the following:

	git clone https://github.com/apache/incubator-warble-server.git /opt/warble

	cd /opt/warble/setup

	python3 setup.py

	Enter the configuration parameters the setup process asks for

This will set up the database, the configuration file, and create your
initial administrator account for the UI. You can later on do additional
configuration of the data server by editing the api/yaml/warble.yaml
file.

Setting up the Web UI

Once you have finished the initial setup, you will need to enable the
web UI. Warble is built as a WSGI application, and as such you can
use mod_wsgi for apache, or proxy to Gunicorn. In this example, we will
be using the Apache HTTP Server and proxy to Gunicorn:

	Make sure you have mod_proxy and mod_proxy_http loaded (on
debian/ubuntu, you would run: a2enmod proxy_http)

	Set up a virtual host in Apache:

<VirtualHost *:80>
 # Set this to your domain, or add warble.localhost to /etc/hosts
 ServerName warble.localhost
 DocumentRoot /opt/warble/ui/
 # Proxy to gunicorn for /api/ below:
 ProxyPass /api/ http://localhost:8000/api/
</VirtualHost>

	Launch gunicorn as a daemon on port 8000:

cd /opt/warble/api
gunicorn -w 10 -b 127.0.0.1:8000 handler:application -t 120 -D

Once httpd is (re)started, you should be able to browse to your new
Warble instance.

Installing Nodes

Pre-requisites

The Warble Nodes rely on the following packages:

	Python >= 3.4 with the following packages:

	
	python3-yaml

	
	python3-ldap

	
	python3-dns

Custom node tests may require additional packages.

Configuring a node

First, check out the node source in a file path of your choosing:

git clone https://github.com/apache/incubator-warble-node.git

Then edit the conf/config.yaml file to point towards the
proper Warble Master server.

Then fire up the node software as a daemon:

python3 node.py start

Warble Node apps will, when run the first time, set up an async
key pair for encryption and verification, and request a spot in
the Warble Master node registry. Spots are verified/approved in the
Warble UI, and once completed, the node will receive an API key
that corresponds with its ID and key pair, and get to work.
It is worth noting, that the Warble node software needs write access
to the configuration directory on disk, so it can store the API key and
async key pair.

General Design Principles

Client/Server breakdown

(Work in progress!)
This section shows the basic three applications of Warble.

[image: diagram of general design principles]

Agent/Node and Server data flows

(Work in progress!)
This section shows the various components inside the Warble
Server and how they interact. More to come :)

[image: diagram of general node/server communication]

Client and Server communication

Agents and Nodes (referred to in this segment as clients) communicate
with the Warble Server using a three-stage protocol:

	First time a client is started, it generates an async RSA key pair
(default key size is 4096 bits) for encryption and subsequent
verification/signing. The private key is stored on-disk on the client
host, and the public key is sent to the node registry on the master,
along with a request to add the client to the node registry as a
verified client. The Server registers a unique API key for each
client, and binds the public key to this API key.

	Once verified, a client can request test targets and parameters from
the node registry at the Server. This data is sent back to the client
in encrypted form, using the previously sent public key. Thus, only
a verified client can get test targets, and only the client should be
able to decrypt the payload and get clear-text target data.

	Once a client has completed a test (or a batch of tests), the result
is sent to the server and signed using the private key. Thus, the
server can use the public key to verify that the test results came from
the client.

Once test data has been successfully verified and stored on the server,
both the alerting system and the visualization system can retrieve and
process it, ensuring that what they (and you) see is genuine.

[image: diagram of general node/server comms verification]
This figure shows the communication channels as outlined in the
above paragraph.

Node Task Registry Design

Node Tasks

Basic Task Design

Warble Nodes can have one or more (or all) tasks assigned to it. Each
task consists of a target to test, as well as what to test and how to go
about that, encapsulated in a payload object. Each check you wish to
perform requires an associated task, but may be performed by multiple
nodes. Thus, testing whether your main web site works on port 80
requires a task, as does a test for https on port 443, as they are
technically two distinct targets. Specific tasks may have optional tests
built into them,for instance a SSL certificate check on a https site.

Task status

A task can be either enabled, disabled, or muted. Disabling a task
prevents it from running on nodes, whereas muting a task will still
cause nodes to perform it, but alerting will be silenced. Muting can be
used for when you still need to monitor a situation, but you don’t need
to be reminded whenever the test results changes.

Task sensitivity

A task can also have a specific sensitivity set. Sensitivity denotes
how failures are treated, and when to alert about state changes:

	low: Alerting only happens if all currently active nodes agree that
the test has failed, e.g. the service is down completely.

	default: Alerting happens if a majority of nodes agree that the test
has failed. This is the default behavior and balances out the need for
speedy alerting versus the need for fewer false positives.

	high: Alerting happens if more than one node sees failures. While
more sensitive than the default, it still removes a fair bit of false
positives by requiring confirmation of a reported failure by at least
one other node.

	twitchy: Alerting happens if any node registers a failure.
This may be useful for services that have guaranteed service level
agreements, but can lead to a lot of false positives.

It should be noted that if you run a setup of Warble with only one, or
very few nodes attached, the sensitivity levels may differ very little
in terms of when alerting happens, as the definition of quorum changes
based on how many active nodes you have at any given time.

Task Categories

Each task is assigned a task category, which helps you separate tasks
into easily recognizable groups and access definitions.

Each task category has a distinct alerting and escalation path, meaning
you can assign different teams to different categories, and have alerts
go to that team, independent of other task categories. This can be
useful for having front-end issues go to a specific team, while back-end
issues go to another team.

Task Category Access

Users can be assigned the following access levels to categories, on a
per-user basis:

	Read-only access: The user can read and analyze test results, but
cannot edit or remove tasks, nor see the specific payload details
(thus, if you add a test with credentials, users with read-only
access cannot see the credentials)

	Read/write access: The user can read, modify, and remove existing
tests. They can also add new tests to the category.

	Admin access: The user can, besides permissions listed above, also
modify or remove the category altogether or change its alerting
options. This access level should generally be reserved for power
users only.

It should be noted that super users on the system (such as the account
you create at setup) can freely access and modify any aspect of the
tasks/categories.

Index

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_images/diagram-node-server-verification.png
Public infrastructure Apache Warble

External Test parameters.

nostt [encryp«ed with node key
Node registers and [T «—Test targets

External
host 2. sends public key
—

i

Result certificate verification

External
host 3

|

Timeseries
Database

_static/ajax-loader.gif

_images/diagram-general-principles.png
Data pull (external datais fetched from downstream)
Data push (intenal data is pushed upstream)
Bidirectional interaction

Example 1:
Classic setup, multiple external nodes poll for service status.

Power User

Example 2:
Reverse setup; multiple external machine agents push status

Power User

Example 3:
Mixed setup, multiple external machine agents push service status, Warble
nodes poll for status as well.

Warble Master I

External
Host D

Power User

_images/diagram-node-server-relation.png
Warble Server

Test
Registry

Node registration/keysigning
Warble
Node 1 Ty istratic it
Node registration/keysigning

INode registration/keysigning —
Warble —
Timeseries

Database
Power User

-_— Test reports, signed with key

Visualizations

e and Admin Ul

Nodes register with node regisiry, set up async cerlfcate. Once validated, nodes recelve test targets encrypted wilh ther key.
Nodes test targels and produce test reports, signed with theirkey for cerifcation, sends reporis fo imeseries daabase.

Node detais and test reporis are fed info the alerer daemon, which collates issues and reportthem fo the owner of test.

Node, target and report details are aggregated in he visuzlization UL, providing nsight nfo rends and currentisorical statuses.

Ulis used to approve nodes, update testtargets and parameters. testtarges is distributed o node registry service.

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Apache Warble’s documentation!

 		
 Setting up Apache Warble

 		
 Understanding the Components

 		
 Component Requirements

 		
 Server Component

 		
 Node Component

 		
 Source Code Location

 		
 Installing the Server

 		
 Pre-requisites

 		
 Configuring and Priming the Warble Server

 		
 Setting up the Web UI

 		
 Installing Nodes

 		
 Pre-requisites

 		
 Configuring a node

 		
 General Design Principles

 		
 Client/Server breakdown

 		
 Agent/Node and Server data flows

 		
 Client and Server communication

 		
 Node Task Registry Design

 		
 Node Tasks

 		
 Basic Task Design

 		
 Task status

 		
 Task sensitivity

 		
 Task Categories

 		
 Task Category Access

_static/images/diagram-general-principles.png
Data pull (external datais fetched from downstream)
Data push (intenal data is pushed upstream)
Bidirectional interaction

Example 1:
Classic setup, multiple external nodes poll for service status.

Power User

Example 2:
Reverse setup; multiple external machine agents push status

Power User

Example 3:
Mixed setup, multiple external machine agents push service status, Warble
nodes poll for status as well.

Warble Master I

External
Host D

Power User

_static/images/diagram-node-server-relation.png
Warble Server

Test
Registry

Node registration/keysigning
Warble
Node 1 Ty istratic it
Node registration/keysigning

INode registration/keysigning —
Warble —
Timeseries

Database
Power User

-_— Test reports, signed with key

Visualizations

e and Admin Ul

Nodes register with node regisiry, set up async cerlfcate. Once validated, nodes recelve test targets encrypted wilh ther key.
Nodes test targels and produce test reports, signed with theirkey for cerifcation, sends reporis fo imeseries daabase.

Node detais and test reporis are fed info the alerer daemon, which collates issues and reportthem fo the owner of test.

Node, target and report details are aggregated in he visuzlization UL, providing nsight nfo rends and currentisorical statuses.

Ulis used to approve nodes, update testtargets and parameters. testtarges is distributed o node registry service.

_static/up.png

_static/warble-logo.png

_static/images/diagram-node-server-verification.png
Public infrastructure Apache Warble

External Test parameters.

nostt [encryp«ed with node key
Node registers and [T «—Test targets

External
host 2. sends public key
—

i

Result certificate verification

External
host 3

|

Timeseries
Database

_static/images/warble-logo.png

